400-901-9800

sales@bioss.com.cn

support@bioss.com.cn

β -葡萄糖苷酶(β-GC)活性检测试剂盒说明书 β -glucosidase Assay Kit

分光光度法

货号: AK044 规格: 50T/24S

产品组成及保存条件:

货号	规格	储存条件			
提取液 ES02	50mL×1 瓶	4℃保存			
AK044-A	粉剂×2 瓶	-20℃保存; 临用前每瓶加入10mL 蒸馏水, 充分溶解			
		备用;剩余试剂需-20℃保存4周,避免反复冻融。			
AK044-B	25mL×1 瓶	4℃保存			
AK044-C	80mL×1 瓶	4℃保存			
AK044-标准品	4 mol 4 . #E	4℃保存			
(5 µmol/mL)	1mL×1 瓶				

正式测定前务必取 2-3 个预期差异较大的样本做预测定。

简介:

意义: β -GC (EC 3.2.1.21) 广泛存在于动物、植物、微生物和培养细胞中,催化 β -糖苷键水解,具有多方面生理作用:在纤维素的糖化作用中, β -GC 负责进一步水解纤维素二糖和纤维素寡糖生成葡萄糖; β -GC 水解萜烯类香气前驱体,使糖苷键合态变成游离态,从而产生香味; β -GC 能够水解植物体内野黑樱苷,释放 HCN,从而防止昆虫取食。

原理: β-GC 分解对-硝基苯-β-D-吡喃葡萄糖苷生成对-硝基苯酚,后者在 400nm 有最大吸收峰,通过测定吸光值升高速率来计算 β-GC 活性。

自备用品:

可见分光光度计、1ml 玻璃比色皿、台式离心机、水浴锅、可调式移液器、研钵、冰和蒸馏水。

粗酶液提取:

- 细菌或培养细胞: 先收集细菌或细胞到离心管内,离心后弃上清;按照细菌或细胞数量(10⁴ 个): 提取液 ES02 体积(mL)为 500~1000:1 的比例(建议 500 万细菌或细胞加入 1mL 提取液 ES02), 超声波破碎细菌或细胞(冰浴,功率 20%或 200W,超声 3s,间隔 10s,重复 30 次);15000g 4℃离心 10min,取上清,置冰上待测。
- 2. 组织:按照组织质量(g):提取液 ES02 体积(mL)为 1:5~10 的比例(建议称取约 0.1g 组织,加入 1mL 提取液 ES02),进行冰浴匀浆;15000g 4℃离心 10min,取上清,置冰上待测。
- 3. 液体样本直接使用。

测定步骤:

- 1. 分光光度计预热 30min 以上,调节波长至 400nm,蒸馏水调零;
- 2. 标准液的稀释: 临用前将 5 μmol/mL 标准液用蒸馏水稀释至 300、200、100、50、25、10、0 nmol/mL 标准溶液待测;

3. 加样表:

试剂名称	测定管(ul)	对照管(ul)	标准管(ul)
AK044-A	400		
AK044-B	500	500	

样本	100	100				
迅速混匀,放入 37 $^{\circ}$ 准确水浴 30 min 后,立即放入 95 $^{\circ}$ 化水浴 5 min(盖紧,以防止水分散						
失),流水冷却后充分混匀(以保证浓度不变)						
AK044-A		400				
充分混匀,8000g, $4\mathbb{C}$,离心5min,取上清液						
上清液	500	500				
标准液			500			
AK044-C	1000	1000	1000			

充分混匀,室温静置 2min 后,400nm 处测定吸光值 A,分别记为 A 测定、A 对照、A 标准、A 空白。计算 Δ A 测定=A 测定-A 对照, Δ A 标准=A 标准-A 空白。每个测定管需设一个对照管。标准曲线和空白管只需测 1-2 次。

β-GC 活力计算:

1. 标准曲线建立:

根据标准管的浓度(x, nmol/mL)和吸光度(y, ΔA 标准),建立标准曲线。根据标准曲线,将 ΔA (y, ΔA 测定)带入公式计算样本产物浓度 x(nmol/mL)。

2. 酶活力计算:

(1) 按样本蛋白浓度计算:

单位的定义:每mg 组织蛋白每小时产生1nmol 对-硝基苯酚定义为一个酶活力单位。

β-GC 活力(U/mg prot)=(xxV 反总)÷(V 样xCpr)÷T=20x÷Cpr

需要另外测定,建议使用本公司 BCA 蛋白质含量测定试剂盒(Cat#: C05-02001)。

(2) 按样本鲜重计算:

单位的定义: 每克组织每小时产生1nmol 对-硝基苯酚定义为一个酶活力单位。

β-GC 活力(U/g 质量) =(x×V 反总)÷(W×V 样÷V 样总)÷T=20x÷W

(3) 按细菌或细胞数量计算:

单位的定义:每1万个细菌或细胞每小时产生1nmol对-硝基苯酚定义为一个酶活力单位。

β-GC 活力(U/10⁴ cell)=(x×V 反总)÷(500×V 样÷V 样总)÷T=0.02x

注: Cpr: 样本蛋白质浓度, mg/mL, 蛋白浓度需要另外测定; V 反总: 反应体系总体积, 1mL; V 样: 加入反应体系中样本体积, 0.1mL; V 样总: 加入提取液体积, 1mL; W: 样品质量, g; 500: 细胞或细菌总数, 500 万; T: 反应时间, 0.5h。

注意事项:

提取液中含有使蛋白变性的成分,故按蛋白浓度计算时需要重新提取蛋白进行测定。